skip to main content


Search for: All records

Creators/Authors contains: "Hviding, Raphael E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and are fainter, redder, and more numerous, ∼340 AGN deg−2, than comparable photometric and spectroscopic samples. In this work, we obtain 178 rest-optical spectra from two candidate ML-identified AGN classes with the Hectospec spectrograph on the MMT Observatory. We find that our first ML-identified group is dominated by Type I AGNs (85%) with a <3% contamination rate from non-AGNs. Our second ML-identified group is mostly comprised of Type II AGNs (65%), with a moderate contamination rate of 15% primarily from star-forming galaxies. Our spectroscopic analyses suggest that the classes recover more obscured AGNs, confirming that ML techniques are effective at recovering large populations of AGNs at high levels of extinction. We demonstrate the efficacy of pairing existing WISE data with large-area and deep optical/near-infrared photometric surveys to select large populations of AGNs and recover obscured growth of supermassive black holes. This approach is well suited to upcoming photometric surveys, such as Euclid, Rubin, and Roman.

     
    more » « less
  2. Abstract

    We present Fabry–Pérot (FP) imaging and longslit spectroscopy of the nearby Seyfert II galaxy NGC 1068 using the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) to observe the impact of the central active galactic nucleus (AGN) on the ionized gas in the galaxy on kiloparsec scales. With SALT RSS FP we are able to observe the Hα+ [Nii] emission line complex over a ∼2.6 arcmin2field of view. Combined with the longslit observation, we demonstrate the efficacy of FP spectroscopy for studying nearby Type II Seyfert galaxies and investigate the kiloparsec-scale ionized gas in NGC 1068. We confirm the results of previous work from the TYPHOON/Progressive Integral Step Method survey that the kiloparsec-scale ionized features in NGC 1068 are driven by AGN photoionization. We analyze the spatial variation of the AGN intensity to put forward an explanation for the shape and structure of the kiloparsec-scale ionization features. Using a toy model, we suggest the ionization features may be understood as a light echo from a burst of enhanced AGN activity ∼2000 yr ago.

     
    more » « less
  3. Abstract

    By combining the James Webb Space Telescope (JWST)/NIRCam JADES and CEERS extragalactic data sets, we have uncovered a sample of 21 T and Y brown dwarf candidates at best-fit distances between 0.1 and 4.2 kpc. These sources were selected by targeting the blue 1–2.5μm colors and red 3–4.5μm colors that arise from molecular absorption in the atmospheres ofTeff< 1300 K brown dwarfs. We fit these sources using multiple models of substellar atmospheres and present the resulting fluxes, sizes, effective temperatures, and other derived properties for the sample. If confirmed, these fits place the majority of the sources in the Milky Way thick disk and halo. We observe proper motions for seven of the candidate brown dwarfs, with directions in agreement with the plane of our Galaxy, providing evidence that they are not extragalactic in nature. We demonstrate how the colors of these sources differ from selected high-redshift galaxies, and explore the selection of these sources in planned large-area JWST NIRCam surveys. Deep imaging with JWST/NIRCam presents an an excellent opportunity for finding and understanding these ultracool dwarfs at kiloparsec distances.

     
    more » « less
  4. Abstract

    We present a catalog of 717 candidate galaxies atz> 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend tozphot∼ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates atzphot> 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz=zphotzspec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history.

     
    more » « less
  5. Abstract

    We present a spectroscopic and photometric analysis of a sample of 416,288 galaxies from the Sloan Digital Sky Survey (SDSS) matched to mid-infrared (mid-IR) data from the Wide-field Infrared Survey Explorer (WISE). By using a new spectroscopic fitting package, GELATO (Galaxy/AGN Emission Line Analysis TOol), we are able to retrieve emission line fluxes and uncertainties for SDSS spectra and robustly determine the presence of broad lines and outflowing components, enabling us to investigate WISE color space as a function of optical spectroscopic properties. In addition, we pursue spectral energy distribution template fitting to assess the relative active galactic nucleus (AGN) contribution and nuclear obscuration to compare to existing mid-IR selection criteria with WISE. We present a selection criterion in mid-IR color space to select AGNs with an ∼80% accuracy and a completeness of ∼16%. This is the first mid-IR color selection defined by solely using the distribution of Type I and Type II optical spectroscopic AGNs in WISE mid-IR color space. Our selection is an improvement of ∼50% in the completeness of targeting spectroscopic AGNs with WISE down to an SDSSr< 17.77 mag. In addition, our new criterion targets a less-luminous population of AGNs, with on average lower [Oiii] luminosities by ∼30% ( > 0.1 dex) compared to typical WISE color–color selections. With upcoming large photometric surveys without corresponding spectroscopy, our method presents a way to select larger populations of AGNs at lower AGN luminosities and higher nuclear obscuration levels than traditional mid-IR color selections.

     
    more » « less
  6. null (Ed.)